Significance of the direct correlation of ammonite and radiolarian zones in the Izumi Group for integrated biostratigraphy of Late Cretaceous NW paleo-Pacific region

Keisuke ISHIDA¹, Hisao HASHIMOTO ², Tetsuji YAMASAKI ³, Yasuyuki TSUJINO ⁴ and Takeshi KOZAI ²

¹ Laboratory of Geology, Institute of SAS, University of Tokushima, Tokushima 770-8502, Japan <ishidak@ias.tokushima-u.ac.jp>
² Laboratory of Sciences, Naruto University of Education, Naruto 772-8502, Japan <hashimotohisatj@yahoo.co.jp> <kozai@naruto-u.ac.jp>
³ Laboratory of Earth Science, Faculty of Education, Ehime University, Matsuyama 790-8577, Japan <yamasaki@ed.ehime-u.ac.jp>
⁴ Tokushima Prefectural Museum, Tokushima, 770-8070, Japan <tsujino-yasuyuki-1@mt.tokushima-ec.ed.jp>

Abstract

The direct correlation of radiolarian and ammonite zones in the Izumi Group were reviewed and revised for integrated biostratigraphy across the Campanian – Maastrichtian boundary. The significance of the direct correlation between mega- and micro-, i.e. between relatively near-shore nektonic and slope-basin planktonic faunas in the same stratigraphic field, was discussed in relation with the litho- and biofacies of the group. The Late Cretaceous ocean climate change and surface seawater current inferred from the radiolarian fauna was considered as a marker event for the chronostratigraphic correlation in the middle latitude continental shelf to slope-basin facies facing towards the NW paleo-Pacific.

Keywords: Late Cretaceous, Campanian – Maastrichtian, ammonite, radiolaria, biostratigraphy, Izumi Group.

INTRODUCTION

The Izumi Group (Harada, 1890) of the Upper Cretaceous inter-arc basin deposit along the northern side of the Median Tectonic Line (ex. Takahashi and Yamasaki, 1991) is one of the most important fields for the direct correlation of ammonite and radiolarian biostratigraphy in Japan and NW Pacific region. Both taxa are widely used for the global correlation, whereas their distributions are generally facies controlled as ammonites were relatively near-shore and shallower than radiolarians that are dominantly found in pelagic and deeper marine facies. According to the last reports (Fig.1), the Campanian to Maastrichtian chronological correlation by radiolarian zonation is relatively younger than those by ammonite zonation. To improve the chronological accuracy, direct correlation of ammonite and radiolarian zonations within the same stratigraphic field is necessary. We review the recent status of research compiling the biostratigraphic occurrence of radiolarians and ammonites in the Izumi Group.

GEOLOGICAL OUTLINE

The Izumi Group, nonconformably overlies the Upper Cretaceous Ryoke volcano-plutonic rock series (ca. 100 – 80 Ma), is distributed in Shikoku, Awaji and Kii areas. The Izumi Group is composed of the continental shelf facies and the slope-basin facies. The former is characterized by the occurrence of ammonites and inoceramids from the pelitic facies above the basal conglomerates. The latter is characterized by turbiditic successions with occurrence of “Archeozostera” that is strongly suggested as a trace fossil referable to Zoophycus ichnofacies (Kotake, 1994) where the fine sediments yields radiolarian faunas. The two lithofacies are intertonguing and well-controlled by the intercalations of acidic tuff key beds. The succession and lateral extension are both traceable well, because the group forms eastward plunging synclinal structures.
AMMONITE BIOSTRATIGRAPHY

The Campanian – Maastrichtian ammonite zonation of the Izumi Group was subdivided into nine zones, and the Campanian – Maastrichtian boundary was tentatively proposed between the *Pachydiscus awajiensis* Zone and *Nostoceras hetonaianus* Zone (Fig. 1: Morozumi, 1985). Among the indices, *Pravitoceras sigmoidale*, a very short-range zone index assignable to the upper Campanian (Matsumoto et al., 1981), has also discovered within the *Inoceramus shikotanensis* Zone (Toshimitsu et al., 1995) of the Yezo Supergroup in Hokkaido (Matsunaga et al., 2008). The discovery shows the same situation as in the case of Izumi Group, and will be hopeful for much more precise biostratigraphic correlation between the Yezo Supergroup and the Izumi Group.

RADIOLARIAN BIOSTRATIGRAPHY

After the compile by Sanfilippo and Riedel (1985), the Cretaceous radiolarian taxonomy and biostratigraphy were reviewed (O’Dogherty et al., 2009). Hollis and Kimura (2001) reviewed the Japan’s Campanian and Maastrichtian radiolarian zonations in terms of specific identifications and age determinations. Suyari and Hashimoto (1985) initially reported the occurrence of Campanian radiolarians from the Izumi Group. Yamasaki (1987) firstly studied the radiolarian zonations of the group. Based on data from the Izumi Group and the selected hemipelagic chert-clastic sequences (mostly trench-slope facies) of the Shimanto Terrane, the Upper Cretaceous radiolarian zonation has proposed by Hashimoto and Ishida (1997) and Ishida and Hashimoto (1998) with respect to the first appearance datum (FAD) and last appearance datum (LAD) of selected indices (Fig.2) as follows in ascending order.

Radiolarian Zones

(after Ishida and Hashimoto, 1998)

<table>
<thead>
<tr>
<th>Ma</th>
<th>Amphipyndax tylopus 2 (At 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>Amphipyndax tylopus 1 (At 1)</td>
</tr>
<tr>
<td></td>
<td>Amphipyndax pseudoconulus 2 (Ap 2)</td>
</tr>
<tr>
<td></td>
<td>Amphipyndax pseudoconulus 1 (Ap 1)</td>
</tr>
<tr>
<td></td>
<td>Stichomitra compsa</td>
</tr>
</tbody>
</table>

Fig. 1. The direct correlation of ammonite and radiolarian zonations in the Izumi Group.

<table>
<thead>
<tr>
<th>Ammonite Zones (Morozumi, 1985)</th>
<th>Radiolarian Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ma</td>
<td>Ma</td>
</tr>
<tr>
<td>Pachydiscus aff. subcompressus</td>
<td>Amphipyndax tylopus 2 (At 2)</td>
</tr>
<tr>
<td>Nostoceras hetonaianus</td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td></td>
</tr>
<tr>
<td>Pachydiscus awajiensis</td>
<td>Amphipyndax tylopus 1 (At 1)</td>
</tr>
<tr>
<td>Pravitoceras sigmoidale</td>
<td></td>
</tr>
<tr>
<td>Didymoceras awajiense</td>
<td>Amphipyndax pseudoconulus 2 (Ap 2)</td>
</tr>
<tr>
<td>Didymoceras sp.</td>
<td></td>
</tr>
<tr>
<td>Baculites kotanii</td>
<td>Amphipyndax pseudoconulus 1 (Ap 1)</td>
</tr>
<tr>
<td>Metaplacenticera subtilistriatum</td>
<td></td>
</tr>
<tr>
<td>Sphenocerasus schmidtii</td>
<td>Stichomitra compsa</td>
</tr>
</tbody>
</table>

Whereas the Maastrichtian radiolarian reports are few in Japan (Taketani, 1995), Hashimoto et al. (2001) reported that the *Ar2* is correlative with the *Clathrocyclas? gravis* Zone (Hollis and Kimura, 2001) of Maastrichtian. The radiolarian fauna, characterized by the association of *Acaeniotyle diaphorogona*, *A. gedrangta* and *A. starka* with *Stichomitra cf. compsa*, is the lowest record from the Izumi Group (Tanaka and Yamasaki, 2000). The faunal horizons are regarded as lower part of the *Dictyomitra koslova* (DK) Assemblage Zone (Yamasaki, 1987).
OCEAN CLIMATE AND SURFACE SEAWATER CURRENT INFERRED FROM THE RADIOLARIAN FAUNA

Takahashi and Ishii (1993) indicated that the radiolarian fauna of their At Zone in the Izumi Group includes both boreal (relatively high latitude) and warm (low latitude) currents affinities. The former is represented by the association of *Stichomitria livermorensis*, *Lithomellisa* sp. and *Theocampe altamontensis*. The latter is characterized by *Ampipyndax pseudoconulus*, *Theocampe abschinitta*, *Dictyomitra lamellicostata* and *Myllocercion acineton*. The lower and upper zones (*Sticomitra compsa* Zone and At2 Subzone) are dominated by warm current affinity, whereas the middle zones (Ap Zone to At1 Subzone) are characterized by mixture of both boreal and warm currents affinities. Especially the radiolarian fauna from the upper Ap2 Subzone, that is correlative with the ammonite *Pravitoceras sigmoidale* Zone, is characterized by dominant occurrence of a boreal affinity *Lithomellisa* sp. At the period, the boreal current probably reached into the middle latitude Izumi inter-arc basin. It is suggestive that the radiolarian faunal change in the Izumi Group coincides with the appearance of ammonite *Pravitoceras sigmoidale* both in the Yezo Supergroup and Izumi Group. Phylogenetic relation between *Pravitoceras sigmoidale* and *Didymoceras awajiense* is discussed from the viewpoint of morphological property and the existence of their transitional forms (Misaki et al., 2009; Misaki and Maeda, 2010).

CHRONOLOGICAL DISCUSSION OF THE RADIOLARIAN ZONATION

Magnetostratigraphic chron 32r was recognized in the Izumi Group (Kodama, 1990), and was regarded as Upper Campanian (Kodama et al., 2002). The fission track dating of two acidic tuff beds in the *P. sigmoidale* Zone indicates 73 and 78 Ma (Morozumi, 1997: personal com.). Chronological viewpoint, last radiolarian reports suggested that the ammonite zones are relatively older than radiolarian ones around the Campanian – Maastrichtian border.
We mark the importance of their co-occurrence and stratigraphic intercalations in the same basin, and propose that the radiolarian zonal boundary of Ap2 and Ar1 is correlative with the ammonite zonal boundary between Pravitoceras sigmoidale Zone and Pacydiscus awajiensis Zone (Fig.1).

The confirmed ranges of the selected radiolarian species in the Izumi Group and Shimanto Supergroup (Fig. 2) represents the vertical faunal transition in the Late Cretaceous middle latitude inter-arc basin to trench slope facies facing towards the NW Pacific. The faunal change from Ar1 to Ar 2 is marked by LAD of S. compsa as well as A. nishiyamae, S. manifesta, A. praeagallowayi, D. densicosta and D. multicosstata. The Ar1 to Ar2 faunal change represents the radiolarian faunal recovery by warm current affinities, and the change is remarkable than that from Ap 2 to Ar 1 marked by LAD of D. koslovaie, I. cyclops and T. salillum. Conclusively, the ocean climate change event inferred from the radiolarian faunal transition will be useful for much more precise chronological correlation around the Campanian – Maastrichtian boundary.

SUMMARY

The direct correlation of radiolarian and ammonite zones in the Izumi Group were reviewed and revised for more accurate biostratigraphy across the Campanian – Maastrichtian boundary. In relation with the litho- and biofacies property of the Izumi Group, the significance of the direct correlation in the same stratigraphic field was discussed for unified global correlation of different categories. The Late Cretaceous ocean climate change and surface seawater current inferred from the radiolarian fauna was considered as a marker event for the chronostratigraphic correlation in the middle latitude continental self to slope-basin facies facing towards the NW paleo-Pacific.

ACKNOWLEDGMENTS

We sincerely thank to Prof. Jiro Takahashi of the Ehime University for reading the manuscript and gave us useful suggestions.

REFERENCES

Article history:
Received MS - September 2, 2010
Received revised MS – September 21, 2010
Accepted MS – September 22, 2010